A container that can be empty or have a value. We can specify type Optional<type>
for the container too.
//empty box
Optional.empty()
//box with a value
Optional.of(5)
System.out.println(Optional.empty()); // Optional.empty
// Optional<Object> raw ref (not recommended)
Optional i = Optional.of(5);
// Optional ref with formal type parameter
Optional<Integer> i2 = Optional.of(6);
Foobar fb = null;
Optional.of(fb); // NullPointerException at runtime; use .ofNullable() to prevent
Optional<String> o = Optional.ofNullable(foo);
// if foo is null, then o is assigned by performing Optional.empty() otherwise Optional.of(foo) is performed
// checking for empty
boolean isPresent() // boolean
// accessing
T get() // returns value inside Optional
// if its empty and we access without check - NoSuchElementException at runtime
void ifPresent(Consumer) // use lambda, calls it with value if present
T orElse(T value) // returns value; if Optional is empty
T orElseGet(Supplier) // returns result from Supplier; if Optional is empty
T orElseThrow() // throws NoSuchElementException at runtime; if Optional is empty
T orElseThrow(Supplier) // throws an exception instance supplied by Supplier; if Optional is empty
Examples
String s = Optional.ofNullable(str).orElse("A");
Optional<Integer> o = Optional.of(88);
if(o.isPresent()){
Integer i = o.get();
}
o.ifPresent(x -> System.out.println(x)); // prints "88"
o.ifPresent(System.out::println); // using method reference
o.orElseGet(() -> 99); // returns "88"; "o" isn't empty
o.orElseGet(() -> Math.random());
o.orElseThrow(() -> new IllegalStateException());
o.orElseThrow(IllegalStateException::new); // using method reference
OptionalInt i = OptionalInt.of(2);
i.getAsInt(); // 2
// "OptionalDouble" and "OptionalLong" types are also available
Stream is a sequence of objects. Stream pipeline is a sequence of operations we perform on a Stream
.
Stream<T>
interface defined in the java.util.stream
package.
Stream
Stream
, these don’t run unless terminal operation runs (Lazy evaluation)// finite Stream
Stream.empty();
Stream.of(1, 2, 3);
Stream.of(1, 2, 3).parallel();
// from collection
coll.stream();
coll.parallelStream();
//infinite Stream
Stream.generate(Supplier);
Stream.iterate(seed, UnaryOperator);
Stream.iterate(seed, Predicate, UnaryOperator); // maybe finite
// examples
Stream.generate(() -> 4); // 4 4 4 4 4 ...
Stream.iterate(2, n -> n+2); // 2 4 6 8 ...
Stream.iterate(1, n -> n < 50, n -> n+2); // 1 3 5 7 ... 49
We can’t loop on Stream the way we do on other Collections and arrays.
Stream<Integer> s = Stream.of(1, 2, 3);
for(Integer i : s){ } // does not compile
Streams perform a lot worse on smaller data, its better to use a simple for
loop.
As a rule-of-thumb, if your list has less than order of a few thousand elements, its better to use a for
or a while
loop performance-wise.
long count()
Optional<T> min(Comparator)
Optional<T> max(Comparator)
Optional<T> findAny() // terminates inf stream, usually returns first element on finite Stream (undeterministic; may return something else also)
Optional<T> findFirst() // terminates inf stream (deterministic; always returns first element of Stream)
boolean allMatch(Predicate) // sometime terminates
boolean anyMatch(Predicate) // sometime terminates
boolean noneMatch(Predicate) // sometime terminates
void forEach(Consumer)
Optional<T> reduce()
Collection collect()
reduce(): reduce entire stream to a single value.
public T reduce(T identity, BinaryOperator accumulator) // 1, return type is same as that of seed
public Optional<T> reduce(BinaryOperator accumulator) // 2, no seed so return type is Optional
public U reduce(U identity, BiFunction accumulator, BinaryOperator combiner) // 3, when dealing with different data types
// identity is the initial value of the reduction
// accumulator is a function that takes two parameters: a partial result of the reduction operation and the next element of the stream
// combiner is only needed when combining partial results in parallel streams or when accumulator params is of diff types (even in serial streams)
// examples - 1
Stream.of(3, 5, 6);
stream.reduce(1, (a, b) -> a*b); // 90
Stream.of("a", "b", "c");
stream.reduce("", (a, b) -> a+b); // "abc"
// examples - 2
Stream.empty();
stream.reduce((a, b) -> a*b); // Optional.empty; no seed so Optional return type
// examples - 3
Stream<String> stream = Stream.of("w", "o", "l", "f!");
int length = stream.reduce(0, (i, s) -> i+s.length(), (a, b) -> a+b);
System.out.println(length); // 5
collect(): Mutable reduction since it stores in a mutable object.
public R collect(Supplier supplier, BiConsumer accumulator, BiConsumer combiner)
public R collect(Collector collector)
// examples
TreeSet<String> set = stream.collect(
TreeSet::new, // init
TreeSet::add, // accumulate
TreeSet::addAll); // combine all objects if parallel reductions
// much easier syntaxes
stream.toList(); // only available for List since it is most commonly used
stream.collect(Collectors.toList()); // alt for above
stream.collect(Collectors.toSet()); // for Sets, Maps, etc; remember no guarantee of order since its a Set
stream.collect(Collectors.toCollection(TreeSet::new)); // for very specific Collections like TreeSet, TreeMap, etc..
Stream<T> filter(Predicate)
Stream<T> distinct() // returns only distinct element Stream
Stream<T> limit(long n) // finite Stream of size n
Stream<T> skip(long n) // skip first n elements
Stream<T> map(Function) // map (replace) stream elements with another element (1:1 mapping)
Stream<T> flatMap(Function) // map stream elements with multiple elements (1:N mapping) and flatten the results
Stream<T> sorted()
Stream<T> sorted(Comparator)
Stream<T> peek(Consumer) // can modify state of stream (be careful!)
// examples
s.filter(x -> x.startsWith("a"));
s.map(String::length); // do .length() on each element of Stream
// flatMap: map each element but what we are transforming each of them to is another stream, in the end, everything gets "flattened" (all elements)
Stream<String> str = Stream.of("A", "B", "C");
str.flatMap(e -> Stream.of(1, 2, 3)).forEach(System.out::print); // 123123123
s.sorted((a, b) -> a-b);
s.sorted(Comparator.reverseOrder());
s.peek(System.out::println);
s.peek(list -> list.remove(0)); // modifying state with peek is not a good practice
var one = Stream.of("A");
var two = Stream.of("B", "C");
Stream.concat(one, two)
.forEach(System.out::println);
/*
A
B
C
*/
Stateless: elements of the stream are processed one-by-one, and no state info is retained for previously processed elements of the stream. Ex - filter()
, map()
, forEach()
etc.
first element through entire stream till terminal operation ->
second element through entire stream till terminal operation ->
and so on ...
Stateful: state info is retained for previously processed elements, there maybe some wait or processing involved here when processing elements of the stream (e.g. with sorted()
). Ex - sorted()
, limit()
, distinct()
, count()
etc.
first element stops at stateful operation ->
second element stops at stateful operation ->
and so on ...
all stream elements arrive and sorting happens ->
next operations run...
Some operations on streams can terminate processing early without processing all the elements of the stream. Ex - intermediate operations like limit()
and terminal operations like findFirst()
, anyMatch()
, etc.
These short-circuiting operations are efficient because they can reduce the amount of work done by the stream pipeline by stopping the processing as soon as a conclusive result is found.
Stateless methods work fine on both finite and infinite streams. As they’re processed one-by-one till terminal operation.
With serial streams, the stateful methods run in a finite amount of time.
With infinite streams, stateful methods like sorted()
cause pitfalls as it waits for all the elements to arrive to continue processing. This fills up the heap memory and causes OutOfMemoryError
runtime exception. Terminal operations like count()
can appear hung too since its busy processing all elements which are coming from the infinite stream.
Stream.of("Olaf")
.limit(2)
.forEach(System.out::print);
// Olaf; limit() is just an upper-bound
var list = List.of("Toby", "Anna", "Leroy", "Alex");
list.stream()
.filter(n -> n.length() == 4)
.sorted()
.limit(2)
.forEach(System.out::print);
// AlexAnna
Stream.generate(() -> "Elsa")
.filter(n -> n.length() == 4)
.sorted()
.limit(2)
.forEach(System.out::print);
// infinitely hangs, OutOfMemoryError runtime exception; sorted keeps storing and waiting for all elements to arrive but its an inf stream
Stream<Integer> s = Stream.generate(() -> 5);
System.out.println(s.count());
// infinitely hangs; count keeps counting elements but they never stop coming since its an inf stream
Stream.generate(() -> "Elsa")
.filter(n -> n.length() == 4)
.limit(2)
.sorted()
.forEach(System.out::print);
// ElsaElsa
Stream<String> str = Stream.of("A", "B", "C");
System.out.println(str.count());
System.out.println(str.findFirst()); // runtime error; performing another terminal operation on stream
// java.lang.IllegalStateException: stream has already been operated upon or closed
Creating a stream from an existing collection and modifying the underlying collection afterwards:
List<Integer> ls = new ArrayList<>();
ls.add(1);
ls.add(5);
var s = ls.stream(); // stream isn't created here!
ls.add(10); // adding an element to Collection
System.out.println(s.count()); // stream pipeline actually runs here; terminal operation
// count = 3
// a stream is created and pipeline is executed only where a terminal operation is performed (lazy evaluation).
// alt expl: streams don't read the data from the source (the list in this case) until a terminal operation is executed.
We can immediately convert to stream after a terminal operation:
long count = Stream.of("goldfish", "finch")
.filter(s -> s.length() > 5)
.collect(Collectors.toList())
.stream() // chaining
.count();
System.out.println(count); // 1
Certain streams are available to use which have primitive types inside and also a lot of commonly used type-specific convinience methods.
IntStream - int, short, byte, char
LongStream - long
DoubleStream - double, float
// usage
IntStream intStream = IntStream.of(1, 2, 3); // we can use generate() and iterate() too
OptionalDouble avg = intStream.average(); // sum(), min(), max() also available
IntStream.range(1, 6); // 12345
IntStream.closedRange(1, 6); // 123456
// The above methods - min(), max(), sum(), average() return an Optional[]
// use getAsInt or getAsDouble methods on Optional[] to get:
s.min().getAsInt();
s.average().getAsDouble();
// mapTo<Type>() methods returns <Type>Stream objects
Stream<String> objStream = Stream.of("penguin", "fish");
IntStream intStream = objStream.mapToInt(s -> s.length());
// OptionalDouble and Optional<Double> are diff but mostly the same methods are available
var stream = IntStream.rangeClosed(1,10);
OptionalDouble optional = stream.average();
optional.ifPresent(System.out::println);
System.out.println(optional.getAsDouble());
System.out.println(optional.orElseGet(() -> Double.NaN));
Useful if we want to get some stats about a primitive stream like getting min and max in one go.
IntStream ints = IntStream.of(1, 2, 3);
IntSummaryStatistics stats = ints.summaryStatistics();
stats.getCount();
stats.getMin();
stats.getMax();
stats.getSum();
stats.getAverage();
tryAdvance()
) and partition streams (trySplit()
) into two equal halves and process those partitions independently.takeWhile()
and dropWhile()
intermediate operations, both take a Predicate
as input param.groupingBy()
and partitioningBy()
to store stream elements in a Map.// convert String to stream
IntStream c = str.chars()
// convert stream to String
Collectors.joining()
Collectors.joining(", ", "PRE-", "-POST") // optional separator, prefix, or postfix
// convert array to stream
Arrays.stream(arr)
// primitive stream to wrapper class stream
IntStream nums = IntStream.of(1, 2, 3);
Stream<Integer> list = nums.boxed(); // returns a Stream<Integer>
List<Integer> list = nums.boxed().collect(Collectors.toList()); // collect into to list as usual